## Variance and Standard Deviation

Variance- Square of the deviation

Standard Deviation- Square root of the variance. It shows how much variation exists from the mean. Symbol =  $\sigma$ 

A low standard deviation indicates that the data points tend to be very close to the mean, whereas high standard deviation indicates that the data points are spread out over a large range of values.

| The data from the Ch. 8 Geometry test scores are as follows: | 89, 97, 90, 98, 60, 77, 77, 100 |
|--------------------------------------------------------------|---------------------------------|
| Step One: Find the mean                                      |                                 |
| <i>u</i> =                                                   |                                 |

Step Two: Figure out the deviation. The deviation is \_\_\_\_\_\_.

| Test Score | Deviation (x - μ) | Square of the Deviation |
|------------|-------------------|-------------------------|
| 89         |                   | $(x - \mu)^2$           |
| 97         |                   |                         |
| 90         | 3000              |                         |
| 98         |                   |                         |
| 60         |                   |                         |
| 77         |                   |                         |
| 77         |                   |                         |
| 100        |                   |                         |
| $\mu =$    | $\mu =$           | $\mu =$                 |

| Step Three: Some | of these values are negativeHow can we make them positive? |  |
|------------------|------------------------------------------------------------|--|
| Find the         | OR                                                         |  |

Find the square for each deviation for each number.

Step Four: Find the mean of the squares of the deviations or the VARIANCE.

Step Five: The square root of the Variance is the standard deviation or  $\sigma$ !

$$\sqrt{\phantom{a}} = \sigma = \underline{\phantom{a}}$$

| Examp   | ble: Find the variance and standard deviation for the following data: 12, 15, 17, 19, 21, 11                      |
|---------|-------------------------------------------------------------------------------------------------------------------|
|         | $\mu = \underline{\hspace{1cm}}$                                                                                  |
|         | Variance =                                                                                                        |
|         | $\sigma = \underline{\hspace{1cm}}$                                                                               |
| Try the | ese on your own:                                                                                                  |
| 1.      | Find the variance and standard deviation for the following data: 3, 4, 5, 6, 7, 8, 9, 10                          |
|         | $\mu = \underline{\hspace{1cm}}$                                                                                  |
|         | Variance =                                                                                                        |
|         | $\sigma = \underline{\hspace{1cm}}$                                                                               |
| 2.      | Find the variance and standard deviation for the following data: 100, 200, 300, 400, 500, 600                     |
|         | $\mu = \underline{\hspace{1cm}}$                                                                                  |
|         | Variance =                                                                                                        |
|         | $\sigma = $                                                                                                       |
| 3.      | Find the variance and standard deviation for the following data: 91, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 |
|         | $\mu = \underline{\hspace{1cm}}$                                                                                  |
|         | Variance =                                                                                                        |
|         | $\sigma = \underline{\hspace{1cm}}$                                                                               |

## Variance and Standard Deviation

Variance- Square of the deviation

Standard Deviation- Square root of the variance. It shows how much variation exists from the mean. Symbol =  $\sigma$ 

A low standard deviation indicates that the data points tend to be very close to the mean, whereas high standard deviation indicates that the data points are spread out over a large range of values.

The data from the Ch. 8 Geometry test scores are as follows: 89, 97, 90, 98, 60, 77, 77, 100

Step One: Find the mean

$$\mu = 20$$

Step Two: Figure out the deviation. The deviation is

| Test Score  | Deviation        | Square of the |
|-------------|------------------|---------------|
|             | $(x - \mu)$      | Deviation     |
|             |                  | $(x - \mu)^2$ |
| 89          | 89-80=3          | 9             |
| 97          | 97-80=11         | 121           |
| 90          | 90-80=4          | 10            |
| 98          | 95-80=12         | 144           |
| 60          | :COD-80=-26      | 10710         |
| 77          | 77-86=-9         | 81            |
| 77          | 77-80=-9         | 81            |
| 100         | 100-80-14        | 190           |
| $\mu = 800$ | $\mu = \bigcirc$ | $\mu = 165.5$ |

Step Three: Some of these values are negative...How can we make them positive? Find the <u>absolute value</u> or <u>square</u> from

Find the square for each deviation for each number.

Step Four: Find the mean of the squares of the deviations or the VARIANCE.

Step Five: The square root of the Variance is the standard deviation or  $\sigma$ !

$$\sqrt{149.5} = \sigma = 12.80$$

Example: Find the variance and standard deviation for the following data: 12, 15, 17, 19, 21, 11

$$\mu = 16.83$$
 Deviations: Squared 12-16.83=-3.83=14.47  $15-16.83=-0.83=0.09$   $17-16.83=-0.83=0.09$   $17-16.83=1.17=1.37$   $19-16.83=3.17=10.06$   $21-15.83=6.17=24.73$  ese on your own:  $11-16.83=-4.83=23.33$ 

Try these on your own:

1. Find the variance and standard deviation for the following data: 3, 4, 5, 6, 7, 8, 9, 10

$$\mu = (0.5)$$

$$3 - (0.5) = -3.5 = 12.25$$

$$4 - (0.5) = -2.5 = (0.25)$$

$$6 - (0.5) = -1.5 = 2.25$$

$$10 - (0.5) = -0.5 = 0.25$$

$$10 - (0.5) = -0.25$$

$$12.25$$

2. Find the variance and standard deviation for the following data: 100, 200, 300, 400, 500, 600

$$\mu = 360$$

$$\mu = 360$$

$$\mu = 360$$

$$300 - 350 = -250 - 62500$$

$$300 - 350 = -50 = 2500$$

$$400 - 350 = 60 = 2500$$

$$400 - 350 = 150 = 2500$$

$$600$$

$$600$$

$$400 - 350 = 2500$$

$$600 - 350 = 2500$$

$$600 - 350 = 2500$$

3. Find the variance and standard deviation for the following data: 91, 91, 92, 93, 94, 95, 96,

Find the variance and standard deviation for the following data: 91, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101

$$\mu = 90.58$$

$$\mu = 90.58$$

$$q_1 - q_0.58 = -4.58 = 20.98$$

$$q_2 - q_0.58 = -3.58 = 12.82$$

$$q_3 - q_0.58 = -3.58 = 12.82$$

$$q_4 - q_0.58 = -1.68 = 2.5$$

$$q_6 - q_0.58 = -0.58 = 0.42 = 0.18$$

$$q_6 - q_0.58 = 1.42 = 2.02$$

$$q_7 - q_0.58 = 1.42 = 2.02$$

$$q_8 - q_0.58 = 2.42 = 6.80$$

$$q_9 - q_0.58 = 3.42 = 11.7$$

100-96.58=4.42=19.54

101-95.58= 5.42=29.38

## **Z-scores**

Z-score- Indicates how many standard deviations a data value is above or below the mean. The process of finding the z-scores is called standardizing or normalizing.

$$z = \frac{x - \mu}{\sigma}$$
Standard deviation

The data from the Ch. 8 Geometry test scores are as follows: 89, 97, 90, 98, 60, 77, 77, 100

What is the z-score for an 89?

Step One: Find the mean.

$$\mu = 80$$

Step Two: Find the standard deviation.  $\neq$  Notice this is in the calculator! Labeled

$$\sigma = 12.80$$

Step Three: Find the z-score

$$z = \frac{x - \mu}{\sigma}$$

$$z = \underbrace{0, 23}$$

What is the z-score for a 60?

$$\frac{(10 - 80)}{12.80}$$

$$z = -2.02$$

What is the z-score for a 100?

$$\frac{100 - 860}{12.800}$$

$$z = 1.009$$

Amy took the ACT and got a score of 27 with a mean of 21 and a standard deviation of 5.3. Stephanie took the SAT and got a score of 660 with a mean of 515 and a standard deviation of 116. Which student scored higher?

116. Which student scored higher?

$$\frac{27-21}{5.3} = 1.13$$

116. Which student scored higher?

OMYS Z-SCORE

$$37-21 = 1.13$$
 $100-515 = 1.25$ 

Stephanic Scored higher!

Stephanic Scored higher!