1. Additive Identity

What can you add to a number that doesn't change its identity?

Numerically:

$$
3+
$$

\qquad $=3$
$\ldots+2.87=2.87$
Algebraically:

2. Multiplicative Identity

What can you multiply a number by that doesn't change its identity?

Numerically:
$15 \cdot \underline{ }=15$
$-\quad \cdot \frac{2}{3}=\frac{2}{3}$
Algebraically:

3. Multiplicative Property of Zero

What happens when you multiply a number by zero?

$$
\begin{aligned}
\text { Numerically: } \quad 8 \cdot 0 & =- \\
0 \cdot 0.43 & =
\end{aligned}
$$

Algebraically:

4. Multiplicative Inver se

Invert a number \longrightarrow reciprocal
$\frac{2}{3} \longrightarrow$
$5 \longrightarrow$
$1 \frac{1}{8} \longrightarrow$

What happens when you multiply reciprocals?
Numerically:
$\frac{2}{9} \cdot \frac{9}{2}=$ \qquad
$3 \cdot$ \qquad $=1$

Algebraically:

Evaluate the expression.
Name the property that justifies each step.

$$
\left(2 \cdot \frac{1}{2}+8 \cdot 0\right) \cdot 12
$$

$=(1+8 \cdot 0) \cdot 12$ \qquad
$=(1+0) \cdot 12$
$=1 \cdot 12$
$=12$ \qquad

8. Substitution

Numerically:

$$
\frac{12}{3}-6=
$$

\qquad -6

Algebraically:
If $x=y$, then x may be \qquad for y in any expression.

